Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian-Lan Cui, ${ }^{\text {a }}{ }^{*}$ Duan-Lin Cao, ${ }^{\text {a }}$ Wen-Long Guo ${ }^{\text {a }}$ and Peng-Mian Huang ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China, and ${ }^{\text {b }}$ College of Pharmaceuticals \& Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
cuijianlan2005@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
$w R$ factor $=0.083$
Data-to-parameter ratio $=15.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
9-(4-Chlorobenzy))-9H-carbazole

The title compound, $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}$, was synthesized by N alkylation of carbazole with 1-chloro-4-(chloromethyl)benzene. The carbazole ring system is essentially planar and makes a dihedral angle of $109.6(5)^{\circ}$ with the plane of the benzene ring.

Comment

Carbazole derivatives substituted by N-alkylation possess valuable pharmaceutical properties (Buu-Hoï \& Royer, 1950; Harfenist \& Joyner, 1983; Caulfield et al., 2002; Harper et al., 2002). In this paper, the structure of 9-(4-chlorobenzyl)-9Hcarbazole, (I) (Fig. 1), is reported. This was synthesized by N alkylation of carbazole with 1-chloro-4-(chloromethyl)benzene (see Experimental).

(I)

The carbazole ring system in (I) is essentially planar, with a mean deviation of $0.0261 \AA$ for non- H atoms. The dihedral angle formed between the carbazole ring system and the plane of the benzene ring ($\mathrm{C} 14-\mathrm{C} 19$) is $109.6(5)^{\circ}$. The $\mathrm{C} 17-\mathrm{Cl} 1$ distance $[1.739$ (2) \AA] is consistent with the literature, as are all other dimensions (Table 1) (Allen et al., 1987; Huang et al., 2005).

Experimental

The title compound was prepared according to the procedure of Duan et al. (2005). A solution of potassium hydroxide (7.0 g) in dimethylformamide (50 ml) was stirred at 298 K for 20 min . Carbazole ($3.34 \mathrm{~g}, 20 \mathrm{mmol}$) was added and the mixture stirred for a further 40 min . A solution of 1-chloro-4-(chloromethyl)benzene (4.83 g , 30 mmol) in dimethylformamide (50 ml) was added dropwise with stirring. The resulting mixture was then stirred at 298 K for 12 h and
poured into water $(500 \mathrm{ml})$, yielding a white precipitate. The solid product was filtered off, washed with cold water and recrystallized from EtOH, giving crystals of (I). Yield: 5.26 g (90.2%); m.p. 400401 K . Compound (I) (40 mg) was dissolved in a mixture of chloroform (5 ml) and ethanol (5 ml) and the solution was kept at 298 K . Slow evaporation over a period of 16 d gave colourless crystals suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}$
$M_{r}=291.76$
Orthorhombic, $P_{2} 2_{1} 2_{1} 2_{1}$
$a=5.5571(10) \AA$
$b=13.675(3) \AA$
$c=19.357(4) \AA$
$V=1471.0(5) \AA^{3}$
$Z=4$
$D_{x}=1.317 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.951, T_{\text {max }}=0.975$
8301 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.083$
$S=0.99$
2988 reflections
190 parameters
H-atom parameters constrained

Mo $K \alpha$ radiation

Cell parameters from 2157
reflections
$\theta=2.6-21.2^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Rod, colourless
$0.20 \times 0.18 \times 0.10 \mathrm{~mm}$

2988 independent reflections
1937 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-6 \rightarrow 6$
$k=-17 \rightarrow 11$
$l=-21 \rightarrow 24$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0356 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.12 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 1233 \text { Friedel pairs } \\
& \text { Flack parameter: }-0.04(8)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 17$	$1.739(2)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.413(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.385(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.438(3)$
$\mathrm{N} 1-\mathrm{C} 12$	$1.387(3)$	$\mathrm{C} 7-\mathrm{C} 12$	$1.408(3)$
$\mathrm{N} 1-\mathrm{C} 13$	$1.463(3)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.508(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 12$	$108.95(17)$	$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 13$	$126.00(18)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 13$	$125.04(18)$	$\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 14$	$113.55(18)$

All H atoms were included in the riding model approximation, with $\mathrm{C}-\mathrm{H}$ distances constrained to 0.93 (aromatic CH) and $0.97 \AA$ (methylene CH_{2}), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier C).

Figure 1
A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Bruker (1997). SADABS, SMART, SAINT and SHELXTL 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Buu-Hoï, N. P. \& Royer, R. (1950). J. Org. Chem. 15, 123-130.
Caulfield, T., Cherrier, M. P., Combeau, C. \& Mailliet, P. (2002). European Patent 1253141.
Duan, X. M., Han, J., Chen, L. G., Xu, Y. J. \& Li, Y. (2005). Fine Chemicals, 22, 39-40 and 52.
Flack H. D. (1983). Acta Cryst. A39, 876-881.
Harfenist, M. \& Joyner, C. T. (1983). US Patent 4379160.
Harper, R. W., Lin, H. S. \& Richett, M. E. (2002). World Patent 02079154.
Huang, P. M., Li, J. S., Duan, X. M., Zeng, T. \& Yan, X. L. (2005). Acta Cryst. E61, o2366-o2367.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

